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Optimal control of the transient behavior of coupled solid-state lasers
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We apply optimal control theory to substantially reduce transient times for transitions between in-phase and
out-of-phase states in coupled solid-state lasers. The control is a time-varying optical field that is injected into
the cavities of each laser. We have analytically derived the optimal control and numerically solved the opti-
mality system. Numerical simulations indicate that transient times can be significantly reduced upon increasing
the injection strength very briefly.
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Laser arrays hold great promise for space communica
applications, which require compact sources with high o
cal intensities and fast switching times@1#. Recently, both
solid-state@2,3# and semiconductor@4,5# laser arrays have
been investigated to that effect, and various relevant asp
of their dynamical behavior such as chaotic synchroniza
@6#, chaotic communication@7#, and amplitude dropout@8#
have already been reported.

The most efficient mode of operation for space commu
cation is realized when the array elements are synchron
to an in-phase~IP! state, such that the output interferes co
structively and the light intensity at the central lobe scales
N2, whereN is the number of lasers in the array. Unfort
nately, the IP state is typically unstable; instead, the syste
driven to the stable out-of-phase~OP! state, whose destruc
tive interference pattern results in low output intensities
the central lobe@3,5#. The IP behavior can be stabilized b
injecting a common driving laser field into the laser arr
elements@3,5,9#. Then, for sufficiently high driving ampli-
tude, the elements are entrained and the output intens
interfere constructively; full entrainment of the array is re
ized above a certain threshold, determined by the couplin
the array elements@3,5#.

In addition to synchronization, an equally important iss
in applications is the time required to reach the IP behav
from an arbitrary state. In particular, it is desirable to mi
mize the transient time between the IP and OP states, u
removal of the injected entrainment field. This aspect is
portant, for example, in fast switching and communicatio
applications.

Despite the obvious practical relevance and potentia
the topics, transient behavior, switching, and control ther
in ~arrays of! lasers have not been widely studied. We me
tion though the related work of Portaet al. @10#, who applied
a two-step steering function to the pumping of a single C2
laser and reduced the turn-on time by a factor of 3. Us
chaos control methods, Uchidaet al. @11# reported statistica
properties of the transient response times between peri
attractors. Switching was realized via high-frequency inj
tion in a laser diode subject to optical feedback. Lippiet al.
@12# developed a global steering~targeting! technique to in-
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duce transitions between states of generic two-dimensio
separable nonlinear systems described by a Lotka-Volt
model.

Here we apply optimal control~OC! techniques to reduce
the transient switching times between OP and IP states in
array of two coupled solid-state lasers. The OC method
completely general and systematic and does not depend
sentially on the internal features of the system. Since it
lors the effort precisely to the desired task, the OC meth
keeps the cost at its minimum possible and yields signific
reductions of the transient time, without resulting in ove
shoots.

We illustrate the approach on a system of coupled so
state lasers and demonstrate its efficiency. We start wi
complete description of the dynamics of coupled lasers
demonstrate the OC on the dynamics of the phase mo
The phase model adequately describes the dynamics of s
state lasers provided intensity and gain oscillations are sm
~we will discuss the applicability of the phase model to las
dynamics in the paper later on!. The use of the phase mode
also enhances the generality of the OC approach to o
applications, since coupled phase oscillators provide a r
istic description of a wide variety of dynamical system
such as Josephson junctions@13#, neural oscillators@14#,
frictional dynamics@15#, and others@16#.

OC of systems of ordinary differential equations was d
veloped by Pontryagin and his co-workers in the 1950s@17#.
The basic idea is to adjust a coefficient or a source te
viewed as the control, in the differential system to maxim
~or minimize! a goal that is represented in terms of the co
trol and corresponding solution~state! of the differential sys-
tem. Pontryagin’s maximum principle for OC of ordinar
differential equations does not carry over directly to part
differential equations, but some of the associated techniq
do. The corresponding theory was developed by Lions@20#
and applied to a wide variety of distributed systems, rang
from economics and management to physical and biolog
models@18,19,21#. For the sake of simplicity, we present th
application of OC to a system of two coupled lasers, but
procedure extends canonically to arbitrary arrays.

We start from the dimensionless system of equations
scribing the dynamics of two evanescently coupled so
state lasers, where the polarization is adiabatically elimina
@3,8#:
©2003 The American Physical Society22-1
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Ėj~ t !5~Gj2a j1 id j !Ej1k~Ej 111Ej 21!1Ee~ t !,

Ġj~ t !5
tc

t f
@pj2~11uEj u2!Gj #, j 51,2. ~1!

In Eqs. ~1! free end boundary conditions@E0(t)5E3(t)
50# are imposed. The variablesEj and Gj are the dimen-
sionless complex electric field and gain, respectively, for
j th laser. All times and frequencies are scaled relative to
cavity round trip time,tc, andt f is the fluorescence time o
the laser medium;a j and pj are the dimensionless cavit
decay and pump rates, respectively, for thej th laser,k is the
evanescent coupling constant between the two lasers,
Ee(t) is the slowly varying amplitude of the external fie
that drives each laser. System~1! is written in a frame rotat-
ing with frequencyve , at which the external field has
nonzero Fourier component. This frequency is tuned to m
mize the detuning from the cavity resonances. In pract
the output power emitted by the array depends on the tun
of external field to the cavities@9#. The detuningd j5ve
2vc j2GjDv j've2vc j , where vc j is the cavity reso-
nance frequency for laserj and Dv is the atomic detuning
from ve in units of the polarization decay rate. We allow f
a small spread in detunings as a way to test the robustne
the entrainment mechanism to a physically reasonable
rameter spread.

We assumea j5a, pj5p, p.a @3#. SubstitutingEj (t)
5AI j (t) exp@ifj(t)#, whereI j (t) and f j (t) are the intensity
and the phase of laserj, respectively, and assumingEe(t)
5Ee[AI e to be a constant field, the model equations for
two lasers read

İ j52~Gj2a!I j12kAI 1I 2 cos~f22f1!12AI eI j cosf j ,

ḟ j5d j1~21! jk
AI 1I 2

I j
sin~f12f2!2AI e /I j sinf j ,

Ġj5~p2Gj2GjI j !v0 , ~2!

wherev05tc /t f . System~2! has been studied theoretical
for N coupled lasers@3# and the condition for full entrain-
ment was derived. This condition assumes small deviati
in detunings and small couplings between the lasers in
array. We denote the dimensionless amplitude of the injec
field by Ae5AI e /I , whereI 5p/a21. Ideally, to entrain an
array of N identical lasers requires an injected field amp
tude Ae54uku or Ee54ukuAI . The functional form of the
total output intensity may significantly depend on the para
eters of the array, such as detunings and the coupling
stant.

For certain ranges of parameters of the laser array,
intensities and gain oscillations are not large and the c
plete description of the full system@Eqs.~1! and~2!# can be
reduced to the ‘‘phase model’’

ḟ1~ t !5d11k sin~f22f1!2A0~ t !sinf1 ,

ḟ2~ t !5d21k sin~f12f2!2A0~ t !sinf2 , ~3!
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whered i , i 51,2, are the detunings,k is the coupling con-
stant, andA0(t) is the amplitude of the injected field.

We have extensively discussed the conditions for wh
the phase model adequately describes the dynamics o
‘‘full’’ relaxation oscillations model@3,8#. Here we reiterate
these conditions only to verify that we are indeed in t
parameter range where phase description of laser dynami
valid. The conditions ask@8# that v@max(1,«), where v
5a/A(p2a)v0 and«52ka/(p2a)v0 . For the set of pa-
rameters chosen above~which correspond to experimentall
measurable parameters for the neodymium-doped yttr
aluminum garnet laser@22#!, v5200 and«540. Therefore,
we meet this assumption ifuku!531025, which, indeed, is
satisfied in our simulations since we useuku51.331025.

We consider the physically relevant transitions betwe
OP and IP states. For the case of initial OP lasers, taking
injected field amplitude to be a function of timeA0(t), the
initial conditions read

0,f1~0!,p and f2~0!5f1~0!2p. ~4!

The control functionA0(t) is a Lebesgue integrable functio
such that

4uku<A0~ t !<M0 . ~5!

The lower bound is set at 4uku since 4uku is the constant
amplitude external field input that will drive the phases to t
final IP state, andM0 is an arbitrary upper bound.

Since the aim is to drive the phasesf1 and f2 close
together quickly, we consider the following objective fun
tional, which is to be minimized as a function ofA0 :

J0~A0!5
1

2 E0

T

@~f12f2!2~ t !1«A0
2~ t !#dt. ~6!

The term«A0
2 is a stabilizing term that represents ‘‘the co

of the control,’’ the positive parameter« is chosen small to
make the (f12f2)2 term dominant, and the total time inte
val T is chosen to be shorter than the transient time exp
enced by the system in the absence of an optimal control.
seek the optimal controlA0* (t) such that

J0~A0* !5 min
4uku<A0<M0

J0~A0!.

Here we present in detail the transition from OP to IP w
initial conditions~4!. For the transition from OP to IP with
initial conditions p<f1(0)<2p, f2(0)5f1(0)2p, the
first term in the objective functional is to be replaced
(f12f222p)2. Transitions from IP to OP are treated sim
larly.

The existence of an OCA0* and corresponding optima
state pairf1* ,f2* is guaranteed by the convexity of the pro
lem as a function of the control and by the Lipschitz prope
of the right hand side of Eq.~1! in f1 andf2 @23#.

The optimization problem stated above is solved us
Pontryagin’s maximum principle@17,19#, which converts the
problem ~3!–~6! into a problem of minimizing pointwise a
HamiltonianH:
2-2
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H5
1

2
~f12f2!21

«

2
A0

21l01@d11k sin~f22f1!

2A0~ t !sinf1#1l02~d21k sin~f12f2!

2A0~ t !sinf2! ~7!

with respect toA0 . The adjoint functionsl01 andl02 act like
‘‘Lagrange multipliers’’ and couple the differential equation
@system~3!# to the minimization problem. Pontryagin’s prin
ciple yields the following system of differential equation
and boundary conditions for the adjoint functionsl01 and
l02:

l̇0152]H/]f1

52f11f21l01@k cos~f22f1!1A0~ t !cosf1#

2l02k cos~f12f2!, ~8!

l̇0252]H/]f2

5f12f22l01k cos~f22f1!1l02@k cos~f12f2!

1A0~ t !cosf2#,

l01~T!50, l02~T!50 ~ transversality conditions!.
~9!

To minimize the Hamiltonian with respect toA0 , we use the
necessary condition]H/]A050 at A0* , and solve forA0* ,
taking the bounds into account. As a result, we obtain
explicit characterization of the OC as a function of the st
and adjoint functions:

A0* ~ t !5minS maxF4uku,
1

«
@l01~ t !sinf1~ t !

1l02~ t !sinf2~ t !#G ,M0D . ~10!

Note that concavity of H with respect to A0 yields
]2H/]A0

25«.0, which ensures that we are indeed finding
minimizer.

The OC A0* is found by solving the optimality system
~OS!, i.e., the phase equations~3!,~4! and the adjoint equa
tions ~8!,~9! together with the explicit characterization of th
OC, Eq.~10!. We discuss the numerical solutions of the O
for various choices ofM0 . Since the state system has initi
conditions and the adjoint system has final time conditio
the OS cannot be solved by an ordinary forward march
scheme. Instead, an iterative method with a fourth or
Runge-Kutta scheme is used, whereby the iterative met
consists of the following steps for this two-point bounda
value problem.~i! Guess the value of the OG (A0* ) over the
prescribed timeT. ~ii ! Solve the state systemforward in time
~for a time period 0<t<T) using the Runge-Kutta schem
~iii ! Solve the adjoint systembackward in time for a time
period (T>t>0) using the Runge-Kutta scheme and the
lution of the state equations from step~ii !. ~iv! Update the
control by using a convex combination of the previous co
04622
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trol and the value calculated from the characterization~10!
using the new values of the states and adjoint functions.~v!
Repeat steps~i!–~iv! until the difference between the value
of unknowns at the present iteration and the previous ite
tion becomes arbitrarily small.

We present numerical results for the case of OP ini
conditionsf1(0)51.7p and f2(0)5f12p. The physical
and numerical parameters are given in the figure captio
Since the transient time for the minimal entrainment requi
to achieve synchronization (A0[4uku) is approximately 0.15
time units, we choseT50.15. We then compared the relativ
effects of the time-varying OCs and the minimal entrainm
control on the total output intensity~in units of the intensity
of a single uncoupled laser! @8#, I total/I 054 cos2@(f1
2f2)/2#, whereI 0 is the single laser intensity. Various upp
boundsM0 have been used.

In Fig. 1, we present the results for the transition from O
to IP for a few typical cases. The value of the injection a
plitude A0 to obtain the IP behavior~for the parameters o
our choice! is given byA054uku55.2 ~since in our simula-
tionsk521.3). We use OC to decrease the transient time
reach the IP behavior. We have chosen three values for
upper bounds between 15 and 25, for which the total out
intensities are plotted as functions of time. The total intens
without the OC~i.e., using a constant inputA055.2) is the
reference curve~dash-dotted curve!. As expected, the tran
sient time shortens significantly as controls are allowed
take higher values. In the inset, we show three optimal c
trols during the simulated time, corresponding to the th
different upper bounds. In Fig. 2, we show the time that
required to reach 85%~solid curve!, 75% ~dashed curve!,
50% ~dotted curve!, and 25% ~dash-dotted curve! of the
maximum intensity as a function of the upper bound impos
on the optimal control.

Several comments are in order.
~1! The OC displayed in the Fig. 1 inset shows two co

FIG. 1. Normalized total output intensityI total /I 0 as a function
of time t in the transition from OP to IP for different values ofM0 :
5.2 ~dash-dotted curve!; 15 ~dotted curve!; 20 ~dashed curve!; 25
~solid curve!. Inset: the optimal controlA0(t) as a function of time
t for different values ofM0 : 15 ~dotted curve!; 20 ~dashed curve!;
25 ~solid curve!. The other dimensionless parameters areT50.15,
k521.3, d150.4, andd2520.4.
2-3
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stant regions. The higher one is imposed by the upper l
of the OC,M0 . The lower one is, to a certain extent, th
combined result of the OC method and the size ofT. By
choosing smaller values forT, this region can be reduced o
even eliminated completely.

~2! We studied the asymptotic behavior of the total outp
intensity when the injection amplitudeA0 increases to such
levels that the coupling contribution becomes insignifica
Neglecting the coupling one can solve Eqs.~3! and ~4! ex-
plicitly and show that, in this limit, the total output intensi
behaves as

I total/I 054 cos2@~f12f2!/2#

54 cos2@ tan21C1e2A0t2tan21C2e2A0t#,

which means that the transient time decreases ast;1/A0 .
The coefficientsC1 andC2 can be determined from the in
tial conditionsCi5tanfi(0)/2, i 51,2.

FIG. 2. Time needed to reach 85%~solid curve!, 75% ~dashed
curve!, 50% ~dotted curve!, and 25%~dash-dotted curve! of the
total output intensity as a function of the upper boundM0 .
-

B
s.
.

,
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~3! Finally, we briefly discuss the relevance of these
sults for the full system Eqs.~2!. For small values of the
coupling constantk and detuningsd i , only very small values
of injection amplitude are required for full entrainment
coupled lasers. In that case, the intensities will not chang
time and the conditions of using the phase model are sa
fied @3,8#; therefore the phase model@Eqs. ~3!# yields the
same results as the full model@Eqs. ~2!#. However, if the
injection amplitude is large, relaxation oscillations of the i
tensity have to be considered and the phase model may
be applicable. We tested the control function obtained fr
the phase model@Eqs. ~3!# on the full model@Eqs. ~2!# for
small values of the coupling constant (k51026) and detun-
ings (d152d250.431026) and obtained perfect agreeme
for small injection field amplitudes. For the higher values
the coupling constants, detunings, and control amplitu
used here, optimal controls computed from the phase mo
alone still provide a fairly efficient control tool for the whol
system, even though we observed small discrepancies
tween the intensities, particular at short times.

The results presented here demonstrate that OC theo
a very efficient systematic tool for significantly reducing t
transient times for the array of coupled lasers when switc
between IP and OP states. It is important to mention tha
significant reduction of transient times is obtained at
price of briefly increasing the injection strength. In our e
ample, a brief increase by a factor of 3 in injection may le
to a decrease of the transient time by an order of magnitu
Since the typical injection power required to mode-lock
single laser is less than 1% of the total output power of
injected laser, the ‘‘price’’ for such transient reduction
switching application is reasonable and worthwhile.
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